The Curriculum Book

Bachelor of Technology

Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

4-YEAR PROGRAMME

Choice Based Credit System with Learning Outcomes based Curricular Framework w. e. f. 2023-24

Department of Computer Science & Engineering Faculty of Engineering and Technology Chaudhary Devi Lal University Sirsa-125055

Preface

The overall well-being of a nation depends on the eminence of its human resource. Providing quality education plays a vital role in transforming people into valuable human resource. Well educated students of today will become innovators and leaders of tomorrow who are going to ensure a constructively competitive but sustainable and peaceful world for everyone. Keeping in the view the demand of the skills based on Artificial Intelligence (AI) and Machine Learning (ML), the university has introduced a Bachelor of Technology Programme in CSE with specialisation in Artificial Intelligence & Machine Learning in the Department of Computer Science & Engineering. The curriculum has been designed around the Choice-based Credit System and Outcome-Based Education in which students are at the centre of teaching learning process. The salient features of the curriculum design are as follows:

- 1. To start with, four Programme Educational Outcomes are defined.
- 2. The twelve Programme Outcomes (POs) are taken from the Self Appraisal Report format of National Board of Accreditation (NBA) for undergraduate engineering programmes and two Programme Specific Outcomes (PSOs) are outlined to capture the specialisations of the B. Tech. (AI & ML) programme.
- 3. An induction programme of three weeks duration has been introduced to make the admitted students comfortable in their new environment. The induction programme continues in the form of participation in Sports club or Green club or Cultural, Literature and Film Club etc. for the remaining period of the programme. It is mandatory for every student to join in one of these clubs.
- 4. In addition to the professional core and elective courses, there is a provision for many courses from Basic Sciences, Engineering Sciences, Mathematics and Humanities. The non-credit mandatory courses are included to make students aware about constitution of India, issues related to environmental and sustainable development, and Indian traditional wisdom.
- 5. For every course, 4 to 6 Course Outcomes (COs) are defined which are concrete and measurable.
- 6. Guidelines for preparing sessional examination question papers and assignments have been framed for measuring the attainment levels of COs.
- 7. The internal and external evaluation criteria for various courses have been succinctly described.
- 8. The Course Outcomes (COs) are mapped to Programme Outcomes (POs) by defining a CO: PO articulation matrix for every course.
- 9. The methodology for computing the attainment levels for the Course Outcomes and Programme Outcomes is laid out.
- 10. The new curriculum has a focus on the problem solving and learning capabilities of the students. There are many laboratory courses which give students a hands-on experience in problem solving. Further, provisions for industry internship/training and project works make students ready to accept challenges and do research to solve difficult engineering problems.
- 11. Overall, the curriculum is made keeping in the view the continuous cycle of improvement in teaching learning process.

CONTENTS

Cover page Preface Chapter 1: General Information Chapter 2: Scheme of Examination Chapter 3: Detailed Syllabus

Chapter 1: General Information

1.1 Vision and Mission of the Department

1.1.1 Vision

The vision of the Department is to become a centre of excellence for education in Computer Science and Engineering, Information Technology and Computer Applications. We visualize ourselves as an agency to nurture young minds to be the future leaders in the field of higher education, research and development, and information technology industry. Our aim is to bring out creators and innovators who will work towards the overall well-being of the society.

1.1.2 Mission

- 1. Imparting state-of-the-art knowledge in Computer Science and Engineering, Information Technology and Computer Applications.
- 2. Ensuring that our students graduate with a sound theoretical basis and wide-ranging practical experience.
- 3. Fostering linkages between the Department and, public and private sectors, traversing research establishments as well as Information Technology industry.
- 4. Promoting ethical research of high quality.
- 5. Adopting the best pedagogical methods in order to maximize knowledge transfer.
- 6. Inculcating a culture of free and open discussions in the Department.
- 7. Engaging students in evolving original ideas and applying them to solve complex engineering problems.
- 8. Inspiring a zest into students for lifelong learning.
- 9. Infusing scientific temper, enthusiasm, professionalism, team spirit and leadership qualities in students.
- 10. Sensitizing students to look for environmentally sustainable engineering solutions.
- 11. Upholding democratic values and an environment of equal opportunity for everyone.

1.2 Programme Educational Objectives (PEOs)

The Programme Educational Objectives of the B. Tech. (Artificial Intelligence & Machine Learning) Programme are:

- PEO1. To prepare responsible and ethical professionals to be successfully employed in Computer Science and Information Technology industry, who will be able to apply the principles of mathematics, science, and engineering to develop and deploy Artificial Intelligence (AI) and Machine Learning(ML) based solutions for real world problems after assessing their environmental, cultural and societal implications.
- PEO2. To train students for analysing, evaluating and designing complex engineering AI and ML solutions individually or in teams by doing a systematic and in-depth research in the related problem domains, by using modern tools and by communicating effectively among the various stake holders.
- PEO3. To groom the professionals and entrepreneurs of tomorrow with leadership qualities and deep societal concerns who can move up in their professional career or start their own ventures.
- PEO4. To guide the graduates to develop a positive attitude towards learning and motivate them to take up higher studies and research.

1.3 Programme Outcomes (POs)

- PO1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1.4 Program Specific Outcomes (PSOs)

- PSO1 **Developing Computational Systems**: Use principles of various programming languages, data structures, database management systems, computer algorithms, theory of computation, networking and software engineering for designing and implementing computational systems.
- PSO2 **Designing Intelligent Machine Learning Systems:** Utilize the principles and tools of artificial intelligence, soft computing, data mining and machine learning, data analytics, robotics, IoT, augmented reality etc. for designing and working with intelligent systems that learn from their environment.

Chapter 2: Scheme of Examination

2.1 General course structure and credit distribution amongst various components of the curriculum

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

B. Range of Credits:

In the light of the fact that a typical Model Four-year Under Graduate degree program in Engineering has around 165 credits, the total number of credits proposed for the four-year B.Tech. Computer Science and Engineering (Artificial Intelligence and Machine Learning) shall be kept around 165.

C. Structure of UG Program in CSE (AI & ML):

The structure of UG program in Artificial Intelligence and Machine Learning shall have essentially the following categories of courses with the breakup of credits as given:

S. No.	Category	Breakup of Credits
1.	Humanities & Social Science Courses	
2.	Basic Science Courses	
3.	Engineering Science Courses	
4.	Program Core Courses (Branch specific)	
5.	Professional Elective Courses (Branch specific)	
6.	Open Elective Courses (from Humanities, Technical Emerging or other Subjects)	
7.	Project work, Seminar and Internship in Industry or elsewhere	
8.	Mandatory -Courses [Induction Program, Environmental Sciences, Indian Constitution]	(non-credit)
	TOTAL CREDIT	165*

*Minor variation is allowed as per need of the respective disciplines.

D. Course code and definition:

Course code	Definitions		
HSMC	Humanities & Social Science Mandatory Courses		
BSC	Basic Science Courses		
ESC	Engineering Science Courses		
PC	Program Core Courses		
PE	Program Elective Courses		
OE	Open Elective Courses		
MC	Mandatory Courses		
EEC	Employment Enhancement Courses (Project/Summer		
EEC	Internship/Seminar, etc.)		

E. Category-wise Courses

E.1 HUMANITIES & SOCIAL SCIENCES COURSES [HSMC]

- (i) Number of Humanities & Social Science Courses:
- (ii) Credits:

#	Course	Course Title	Hours pe	r week	Credits
	Code		Lecture	Practical	
1	HSMC/1-T	Communication Skills	3	-	-
2	HSMC/2-T	Universal HumanValues – I	3	-	-
3					
4					
			То	tal Credits	

E.2 BASIC SCIENCE COURSES [BSC]

- (i) Number of Basic Sciences Courses:
- (ii) Credits:

#	Course	Course Title		Hours pe	r week	Credit
	Code			Lecture	Practical	
1	BSC/1-T	Mathematics-I		4	-	4
2	BSC/2-T	Mathematics-II		4	-	4
3						
4						
	Total Credits					

E.3 ENGINEERING SCIENCE COURSES [ESC]

(i) Number of Engineering Sciences Courses:

(ii) Credits:

#	Course	Course Title	Hours pe	r week	Credits
	Code		Lecture	Practical	
1	ESC/1-T	Computer Fundamentals	3	-	3
2	ESC/2-T	Problem Solving and Programming	4	-	4
3	ESC/2-P	C Programming Lab	-	4	2
4	ESC/3-T	Mathematical Concepts for Artificial Intelligence	3	-	3
5					
6					
			To	tal Credits	

E.4 PROGRAM CORE COURSES [PC]

(i) Number of Program Core Courses:

(ii) Credits:

#	CourseCode	Course Title	Hours per	week	Credits
			Lecture	Practical	
1	PC/CSEAIML/1-T	Database Concepts	3	-	3
2	PC/CSEAIML/1-P	Database Concepts Lab (SQL)	-	4	2
3	PC/CSEAIML/2-T	Object Oriented Programming	3	-	3
4	PC/CSEAIML/2-P	Object Oriented Programming Lab	_	4	2
5	PC/CSEAIML/3-T	Data Structures	4	-	4
6	PC/CSEAIML/3-P	Data Structures Lab	-	4	2
7	PC/CSEAIML/4-T	Computer Organization and Architecture	4	-	4
			Total Cre	edit	

E.5 PROGRAM ELECTIVE COURSES [PE]

- (i) Number of Program Elective Courses:
- (ii) Credits:

#	Course Code	Course Title	Hours per	week	Total Credits
			Lecture	Practical	
1					
2					

E.6 OPEN ELECTIVE COURSES [OE]

- (i) Number of Open Elective Courses:
- (ii) Credits:

#	Course	Course Title	Hours per	week	Total
	Code		Lecture	Practical	Credits
1					
2					
			T	otal Credits	

E.7 EMPLOYABILITY ENHANCEMENT COURSES (EEC) PROJECT WORK, SEMINAR AND INTERNSHIP IN INDUSTRY OR ELSEWHERE

#	Course	Course Title	Hours per	week	Total
	Code		Lecture	Practical	Credits
1					
2					
			T	otal Credits	

E.8 MANDATORY COURSES [MC]

#	Course	Course Title	Hours per week		Total
	Code		Lecture	Practical	Credits
1	*MC/1	Induction Program	-	-	-
2					
			T	otal Credits	

Note: These are mandatory non-credit courses.

*The Essence and Details of Induction program can also be understood from the 'Detailed Guide on Student Induction program', as available on AICTE Portal, (Link:<u>https://www.aicteindia.org/sites/default/files/Detailed%20Guide%20on%20Student %20Induction%20program.pdf</u>).

Induction program (mandatory)	Three-week duration
Induction program for students to be offered right at the start of the first year.	 Physical activity Creative Arts Universal Human Values Literary Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations

F. Mandatory Visits/ Workshop/Expert Lectures:

- a. It is mandatory to arrange one industrial visit every semester for the students of each branch.
- b. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/ industry/ entrepreneurial orientation.
- c. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from domain specific industry.

G. Evaluation Scheme (Suggestive only):

- a. For Theory Courses: (The weightage of internal assessment is 30% and for End Semester Exam is 70%)
- b. For Practical Courses: (The weightage of End Semester External Exam is 100%).
- c. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.

H. Mapping of Marks to Grades

Absolute marks will be mapped to grades as per University ordinances.

		Semester I			
#	Course Code	Course Title	L	P	Credits
1.	MC/1	3-Week Induction Programme	-	-	-
2.	*HSMC/1-T	Communication Skills	3	-	-
3.	BSC/1-T	Mathematics-I	4	-	4
4.	ESC/1-T	Computer Fundamentals	3	-	3
5.	PC/CSEAIML/1-T	Database Concepts	3	-	3
6.	ESC/2-T	Problem Solving and Programming	4	-	4
7.	PC/CSEAIML/1-P	Database Concepts Lab (SQL)	-	4	2
8.	ESC/2-P	Problem Solving and Programming Lab (C	-	4	2
		language)			
		Tot	tal Cr	edit	18
		Semester II			
#	Course Code	Semester II Course Title	L	P	Credits
#	Course Code BSC/2-T	Semester II Course Title Mathematics-II	L 4	P -	Credits 4
# 1. 2.	Course Code BSC/2-T PC/CSEAIML/2-T	Semester II Course Title Mathematics-II Object Oriented Programming	L 4 3	P - -	Credits 4 3
# 1. 2. 3.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures	L 4 3 4	P - - -	Credits 4 3 4
# 1. 2. 3. 4.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial	L 4 3 4 3	P - - - -	Credits 4 3 4 3
# 1. 2. 3. 4.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial Intelligence	L 4 3 4 3	P - - - -	Credits 4 3 4 3
# <u>1.</u> <u>2.</u> <u>3.</u> 4. <u>5.</u>	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T PC/CSEAIML/4-T	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial Intelligence Computer Organization and Architecture	L 4 3 4 3 4 4	P - - - - -	Credits 4 3 4 3 4 3 4
# 1. 2. 3. 4. 5. 6.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T PC/CSEAIML/4-T **HSMC/2-T	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial Intelligence Computer Organization and Architecture Universal Human Values-I	L 4 3 4 3 4 3	P - - - - - - - - -	Credits 4 3 4 3 4 -
# 1. 2. 3. 4. 5. 6. 7.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T PC/CSEAIML/4-T **HSMC/2-T PC/CSEAIML/2-P	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial Intelligence Computer Organization and Architecture Universal Human Values-I Object Oriented Programming Lab	L 4 3 4 3 4 3 -	P - - - - - - - - 4	Credits 4 3 4 3 4 - 2
# 1. 2. 3. 4. 5. 6. 7. 8.	Course Code BSC/2-T PC/CSEAIML/2-T PC/CSEAIML/3-T ESC/3-T PC/CSEAIML/4-T **HSMC/2-T PC/CSEAIML/2-P PC/CSEAIML/2-P	Semester II Course Title Mathematics-II Object Oriented Programming Data Structures Mathematical Concepts for Artificial Intelligence Computer Organization and Architecture Universal Human Values-I Object Oriented Programming Lab Data Structures Lab	L 4 3 4 3 4 3 - -	P - - - - - - - - 4 4	Credits 4 3 4 3 4 - 2 2 2

*Non-credit mandatory course. **Non-credit mandatory course. Internal evaluation only.

Chapter 3. Detailed Syllabus

SEMESTER – I

		HSMC	C/1-T : Com	municatio	n Skills		
Course Type	Course Credit	Contact Hours/ Week	Delivery Mode	Maximu External	um Marks Internal	Exam Duration	Assessment Methods
Humanities & Social Sciences	0	03	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objective: The main aim of the course is to build competence in English grammar and vocabulary and to enhance effective communication by developing Reading, Writing, Listening and Speaking skills ofstudents.

Co	urse		At the	At the end of this course, the student will be able to:											
Out	comes														
C	01		define	define various technical writing skills.											
C	02		unders	understand and explain the technical writing and communication skills											
			in thei	r acad	emic a	and pro	ofessio	nal life	e.						
С	03		gain se	elf-cont	fidence	e with	improv	ved con	nmano	dover	Englis	h langu	lage.		
C	04		classif	y the te	echnic	al aspe	ects of	comm	unicat	tion for	r bette	r perfo	rmance	in	
			extra-c	urricul	lar acti	vities,	recruit	tment j	proces	s and p	rospec	ctive jo	bs.		
C	05		compa	re the	various	s techn	ical ar	id com	munic	ation s	kills.				
		CO	-PO Ma	apping	g Matr	ix for	Cours	e HS	MC/1	-T					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
						 				1		1		1	
COI	1	3	1	1	1	-	3	-	-	-	-	-	-	-	
CO2	2	1	1	3	1	-	3	-	-	-	-	-	-	-	
CO3	3	1	1	3	3	-	3	-	-	-	_	-			
CO4	2	1	1	3	1	-	3	-	-	-	-	-	-	-	
CO5	2	1	3	1	3	-	3	-	-	-	-	-	-	-	
Average	2	1.4	1.4	1.4 2.2 1.8 - 3											
	Course Content HSMC/1-T : Communication Skills														

Unit I	Fundamentals of Communication Skills Scope and Significance of
	Communication Skills, Listening, Speaking, Reading and Writing, Technical
	Communication, Tools of Effective Communication.
	Writing Skills Basics of Grammar – Placing of Subject and Verb, Parts of
	Speech, Uses of Tenses, Active- Passive, and Narration.

Unit II	Vocabulary Building and Writing Word Formation & Synonyms, Antonyms, Words Often Confused, One- Word Substitutes, Idioms and Phrasal Verbs, Abbreviations of Scientific and Technical Words.
Unit III	Speaking Skills Introduction to Phonetic Sounds & Articulation, Word Accent, Rhythm and Intonation,Interpersonal Communication, Oral Presentation, Body Language and Voice Modulation (Para linguistics and Non- Verbal), Negotiation and Persuasion, Group Discussion, Interview Techniques (Telephonic and Video Conferencing).
Unit IV	Technical Writing Job Application, CV Writing, Business Letters, Memos, Minutes, Notices, Report Writing &Structure, E-mail Etiquette, Blog Writing.
	Text/Reference Books
 "The Esse Prentice H "Effective 2019. "A Unive Pubs: Pear "High Sch 2007 "Essentials South-West "Technica 2ndEdition "Effective 	 ance of Effective Communication", Ludlow R. and Panton F., Pubs: tall,1992 Communication Skills", Kulbhushan Kumar, Khanna Publishing House, rsity Grammar of English", Quirk R. and Sidney G., 3rd Edition, rsonEducation, 2008 ool English Grammar", Wren and Martin, Pubs: S. Chand & Company Ltd, s of Business Communication", Guffrey M.E., 8th Edition, Pubs: sternCollege Publishing, 2009 I Communication: Principles and Practice", Raman M. and Sharma S., n, Pubs: Oxford University Press, 2012 Business Communication", Rodrigues M.V., Pubs: Concept
Publishing 8. "English Pubs:2010	Company, Delhi, 2003 Vocabulary in Use", McCarthy M. and Felicity O' Dell, 2nd Edition,

]	BSC/	1-T :	Math	iemat	ics-I						
Course '	Туре	Co	urse	Co	ntact	De	elivery	,	Maxi	mum N	Iarks	Exam	Ass	sessment		
		Cr	edit	Ho	ours/	Ν	Aode	E	xterna	1 Ir	nternal	Duratio	n M	lethods		
				Week						ltornur						
Basi	с	C)4	()4	Le	ecture		70		30	3 Hour	s TE	E/MTE/		
Scien	ce									20	5 5		Ass Att	ignment/		
										20	5 5		Au	enuance		
Instruct	ions t	o pap	er set	ter fo	r Fin	al-Te	rm Ex	amin	ation:	The I	Final-Ter	m examin	nation s	hall cover		
the whole	e cont	ent of	the co will be	ourse.	I ne t	otal n	umber	iectiv	lestion	is snall	be nine	. Questior	numbe nlete sv	r one will diabus In		
addition	to the	comp	ulsorv	/ first	auesti	ion. th	iere sh	all be	four i	units ir	the que	stion pap	er each	consisting		
of two q	uestio	ns. Th	ie stuc	lent w	vill att	empt	one q	uestio	n fron	n each	unit in	addition t	o the co	ompulsory		
question	. All q	uestio	ns will	l carry	⁷ equa	l marl	ks.									
Course	Objec	tive: 🕻	The ma	ain aiı	n of t	he coi	urse is	to dis	scuss t	he con	cepts an	d related	terminol	ogy		
of calcul	us, va	rious t	heorei	ms and	1 engi	neerir	ıg don	nain p	roblen	ns.						
C	ourse		At th	e end	of thi	s cou	rse, the	e stud	ent wi	ll be at	ole to:					
Out	tcome	es														
(CO1		defin	e the	conc	epts a	ind re	lated	termir	nology	of calc	ulus, ordi	nary dif	ferential		
			equa	equation and multiple integrals, vector calculus, differential equations, Laplace												
	<u>~02</u>		transforms etc. understand the contribution and significance of various theorems and methods													
	202		understand the contribution and significance of various theorems and methods such as Green's theorem, Stokes' theorem, Variation of parameters, etc.													
(CO3		solve the different problems of calculus, ordinary differential equation and													
			Laplace transform with the assistance of suitable theorems and methods													
(CO4		Anal	yze a	nd ev	aluate	diffe	rent a	ipproa	ches a	nd meth	ods of ca	lculus,	ordinary		
			diffe	rentia	l equ	ation	and I	Laplac	ce trai	nstorm	in sol	ving engi	neering	domain		
	705		com	oile ai	nd int	egrate	the k	nowle	edge o	f calcu	lus, ord	nary diffe	erential	equation		
	200		and I	Laplac	e trar	sform	to sol	lve the	e real-	world	problem	s	oronnar	equation		
				CO-J	PO M	appir	ıg Ma	trix f	or Coi	urse E	SC/1-T	1				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1	1	-	-	-	-	-	-	-	1	-	-		
						1	<u> </u>									
CO2	3	3	1	1	2	-	-	-	-	-	-	1	-	-		
CO3	2	3	3	3	3	1	-	-	1	1	-	2	-	_		
<u> </u>						<u> </u>	<u> </u>									
04	1	3	3	3	3	1	1	-	1	-	-	1	-	-		
CO5						<u> </u>	 						-			
000	1	3	3	3	3	3	2	1	1	1	1	3				
Average	2	1.8	2.2	2.2	2.2	1	0.6	0.2	0.6	0.4	0.2	1.6	-	-		
	2	1.0	2.2	2.2	2.2	1	0.0	0.2	0.0	0.4	0.2	1.0				
						(Cours	e Cor	ıtent							
]	BSC/	1-T:]	Math	emat	ics I						
U	nit I		Linea	ar Alg	gebra											
			Vecto	or spa	ices,	Subsp	baces,	basis	and	dimen	sion, li	near trans	sformati	ons,		
			repres	sentat	ion of	transf	format	ions ł	by Ma	trices,	linear fu	inctions, 1	ranspos	e of		
			Bilin	ear foi	siorm	ations	, can	lonica	1 IOIN	ns. Lii s skew	near fur	tric biline	ia aajo: ar forms	ints,		

Unit II	Calculus Continuity and differentiability of a function of single variable, statement of Rolle's Theorem, Lagrange's mean value theorem and applications. Double and Triple Integrals: Calculations, Areas, Volumes, change of variables Vector Calculus Applications. Integrals of Vector Functions: Line integrals, Green's formula, path independence, Surface integral: definition, evaluation, Stoke's formula, Gauss-Ostrogradsky divergence theorem.
Unit III	Differential Equations Ordinary Differential Equations: First order linear equations, Bernoulli's equations, Exact equations and integrating factor, Second order and Higher order linear differential equations with constant coefficients
Unit IV	Multivariate Calculus Integral Calculus: Definite Integrals as a limit of sums, Applications of integration to area, volume, surface area, Improper integrals. Functions of several variables: Continuity and differentiability, mixed partial derivatives, local maxima and minima for function of two variables, Lagrange multipliers.
	Text/Reference Books
1. 2. 3.	 G. B. Thomas, R. L. Finney. Calculus and Analytic Geometry, Ninth Edition, PearsonEducation, 2010 Reena Garg, Advanced Engineering Mathematics, Khanna Book Publishing Co., Delhi. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill, 2017
4. 5.	E. Kreyszig. Advanced Engineering Mathematics, Wiley, 2015 Calculus and Analytic Geometry, G. B. Thomas and R. L. Finney, Pearson Education, 2010

ESC/1-T : Computer Fundamentals											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment				
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods				
Engineering Science	03	03	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/				

Course Objective: The objective of the course is to give basic competencies for application of a computer to everyday tasks using standard packages.

Co	urse	1	At the	end of	f this	course	e, the s	studen	t will	be able	e to:			
Outo	utcomes													
CO1 define the organization and operation of a computer processor.														
С	02	ι	inderst	and th	ne con	tributi	on of	prima	ry an	d seco	ndary 1	memory	, perip	heral
devices and computer specifications.														
CO3 explain the representation of data and information in computer systems.														
С	04	8	nalyze	e the	use	standa	rd wo	ord, a	nd sp	readsh	eets, gi	raphics	gener	ation
		I	oackag	es, stai	ndard	use dat	tabase	systen	1					
C	05	C	compil	e and	integr	ate the	e knov	vledge	of or	ganiza	tion ar	nd oper	ation	of a
		C	compu	ter pro	ocesso	or, rep	resenta	tion of	f data,	packag	es.			
				(CO-PO) Map	ping]	Matrix	x for C	Course	ESC/1	-T		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

CO1	3	2	1	1	-	-	-	-	-	-	-	1	-	-
CO2	3	3	1	1	2	-	-	-	-	-	-	1	-	-
CO3	2	3	3	3	3	1	-	-	1	1	-	2	-	-
CO4	1	3	3	3	3	1	1	-	1	-	-	1	-	-
CO5	1	3	3	3	3	3	2	1	1	1	1	3	-	-
Average	2	1.8	2.2	2.2	2.2	1	0.6	0.2	0.6	0.4	0.2	1.6	-	-

Course Content ESC/1-T : **Computer Fundamentals**

Unit I	Definition, characteristics of computers, application of computers, evolution of
	computers.
	Block diagram of computer, its components and their functions
	Types of computer based on different criteria like processing power, hardware generation and functions.

	Unit II	Non positional number system, positional number system, number system conversion, fractional number. Binary Arithmetic: Addition, Subtraction, Multiplication, Division. Boolean Algebra and Logic Circuits: Boolean Algebra, Boolean Function. Logic Gates, Logic Circuits, Minimization of Boolean expressions – algebraic method and K-map. Computer Codes: BCD Code, EBCDIC code, ASCII, Collating Sequence.
	Unit III	Secondary Storage Devices: Sequential and Direct Access Devices, Punched Paper Tape, Magnetic Tape, Magnetic Disk, Floppy Disk, Winchester Disk, Magnetic Drum, Mass Storage, Optical Disk, Magnetic Bubble Memory, Storage Hierarchy. Input-Output Devices: Punched Hole Devices, Magnetic media devices, printers, keyboard devices, Scanners, Other devices, Offline Data Entry Devices.
	Unit IV	Computer languages and computer software: Levels/generations of computer languages and their advantages and disadvantages, types of computer languages and their application areas/domains, software and its types, software packages.
		Text/Reference Books
1. 2.	Priti Sinha, F Applications", V. Rajaraman,	Pradeep K., Sinha, "Computer Fundamentals: Concepts, Systems & BPB Publications. "Fundamentals of Computers", PHI.
3.	V. Rajaraman,	"Introduction to Information Technology", PHI

4. R.K. Taxali, "Introduction to Software Packages", Galgotia Publications.

				PC	C/CSE	AIML/	1-T : D a	atabase	e Con	cept	S				
Course Ty	pe	Course	Contact Delivery Maximum Marks Exam										Asse	ssment	
		Credit	Но	urs/We	eek	Mode	•	Extern	nal	Ir	iterna	1	Duration	Me	thods
Program Core	L	03		03		Lectur	re	70			30		3 Hours	TEE	/MTE/
										20	5	5		Atte	ndance
Instruction content of will be con question th one question	ns to the c nsisti- nere s on fro	paper ourse. 7 ng of sl hall be om each	setter Total n nort/ob four un unit in	for Fi umber ojective nits in n addit	inal-To of que type the que ion to	erm Exa estions sl question estion pa compuls	aminati hall be as from aper eac ory que	on: Fin nine. Q comple ch cons estion. A	nal-Te uestio ete sy isting All que	orm on nu llab of t estic	exami umber us. In wo qu ons wi	natio one addit lestio ll car	n shall co will be co ion to co ns. Studen ry equal r	wer the mpuls mpulsont will narks.	e whole ory and ory first attempt
Course O	bject e and	ives: Tl applica	ne objections	ective of data	of this base sy	stems.	is to ge	et the s	tuden	ts fa	amilia	r with	the con	cepts, 1	models,
Course	Out	comes	At	the en	d of tl	nis cour	se, the	studen	ıt will	be	able	to:			
	201		def nor dat	ine sch mal fo abase s	nema a orms, security	rchitectu data ty v issues.	ure, ER pes, vi semant	diagra ews in ic data	ms, E 1 SQI mode	ER L, c ls. a	mode concu nd cli	l,, fui rrency ent se	nctional d y control erver arch	epende techr itectur	encies, niques, e.
(CO2		des nor	scribe ER diagram, relational model, EER model, functional dependencies, rmal forms, SQL constraints and views, recovery algorithm.									encies,		
(CO3		app	ply inheritance, SQL queries, constraints, recovery techniques.											
(CO4		diff dep	ifferentiate subclass and super class, specialization and generalization, functional ependencies, normal forms.									ctional		
(CO5		just be l	justify architecture, relational schema, recovery technique and data model she better suited in different situation.									l shall		
			CO-	PO M	appin	g Matri	x for C	ourse I	PC/CS	SEA	IML	/1 - T			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9)	PO10	PO1	1 PO12	PSO1	PSO2
CO1	1	3	1	1	1	-	3	_	-		2	-	-	3	
CO2	2	1	1	3	1	-	3	-	-	ĺ	2	-	-		
CO3	3	1	1	3	3	-	3	-	-		2	-	-		
CO4	2	1	1	3	1	-	3	-	-		2	-	-		
CO5	2	1	3	1	3	-	3	-	-		2	-	-		
Average	2	1.4	1.4	2.2	1.5	-	3	-	-		2	-	-		
				Course Content PC/CSEAIML/1-T: Database Concepts											
Unit I		Basic T Based Manage Compo Roles Applica	ermine Appro ement nents, in the ations l	ology, oach, l Systen Advan e Data Develo	Tradit Databa n (DB) tages a abase pers an	ional file se App MS), Co and Disa Environ nd End U	e based roach-C ompone dvantag ment Jsers.	Systen Charact nts of I ges of I - Data	ns- Fil eristic DBMS DBMS base	le B s o S Ei Ad	ased . f Da nviror minis	Appro tabase iment trator,	oach-Limi e Approa , DBMS , Databa	tations ich, D Functio se De	of File atabase ons and signers,
Unit II		Databas Instance Classifi DBMS. Introdue	se Systes, Dat cation	tem An a Indej of Dat to Da	rchitec pender tabase ta Mo	ture – T nce – Lo Manage odels, E	Three L gical ar ment Sy ntity-Ro	evels o nd Phys ystem, (f ANS ical D Centra	SI/S Data alize Mod	PAR Indep d and	C Arc ender Cliei Entit	hitecture, nce. nt Server y Types.	Scher archite , Entit	nas and ecture to ty Sets.

	Attributes Relationship Types, Relationship Instances and ER Diagrams
Unit III	Relational Model, Relational Model Terminology-Relational Data Structure, Database Relations, Properties of Relations, Keys, Domains, Integrity Constraints over Relations, Base Tables and Views. Relational Algebra & various operations (with respective SQL commands), Tuple and Domain calculus
Unit IV	Functional dependencies & Normalisation: Data Redundancy and Update Anomalies. Functional Dependencies:-Full Functional Dependencies and Transitive Functional Dependencies, Decomposition and Normal Forms (1NF, 2NF, 3NF & BCNF).
	Text/Reference Books
 Elmasri & Korth & S C.J. Date, Abbey Ab Ltd. 	Navathe, Fundamentals of Database System, 3e, Addison Wesley, New Delhi. ilberschatz, Database System Concept, 4e, McGraw Hill International Edition. An Introduction to Database System, 7e, Addison Western, New Delhi. ramson & Cory, ORACLE SI-A Beginner's Guide, Tata McGraw Hill Publishing Company

		ESC/2-T:	Problem Solvi	ng and Prog	amming		
Course Type	e Type Course Contact Delivery		Delivery	Maximu	m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods
Engineering Science	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
					20 5 5		Attendance

Course Objectives: Programming for problem Solving is a basic and important for every graduate in Engineering. This course introduces basic constructs of programming language like algorithms, conversion of algorithms to programs etc. By studying this course students will get to know about C programming language with its various programming paradigms like branching, looping, arrays, functions, recursion, structure, pointers, etc. to be implemented for solving real world problems. It includes various sorting and searching algorithms as well with notion of order of complexity through simple program

Cours	Course Outcomes At the end of this course, the student will be able to:													
CO1 describe the algorithms to programs (in C language) to test and execute the programs										programs				
	and correct syntax and logical errors.													
	CO2			demonstrate the use of conditional branching, iteration and recursion.										
-	CO3			apply p	progra	mming	g to sol	ve mat	rix additi	on and n	nultiplica	tion probl	ems and s	searching
				and so	rting p	roblen	n, app	ly prog	ramming	to solve	simple r	numerical	method p	oroblems,
				namely	root f	finding	g of fur	nction,	differenti	ation of t	function a	and simple	e integrati	on.
	CO4	-		compa	re the	suitab	ility o	f array	s, pointer	s and st	ructures 1	o formula	ate algorit	hms and
				progra	ms									
				for va	rious p	proble	m situ	ations						
	CO5	i		justify	a prol	blem i	nto fu	nctions	and synt	thesize a	complet	e program	n using di	vide and
				conque	onquer approach									
				(CO-PO Mapping Matrix for Course ESC/2-T									
COs	PO1	PO2	PO3	PO4	04 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02									
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	2	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	-	1	-	-	-	-	-	-	-	-	-	-
Average	1.8	1.4	-	0.2	0.2 0.4									
	Course Content ESC/2-T : Problem Solving and Programming													
Un	Unit I Introduction to Programming													
	Evolution of languages: Machine languages, Assembly languages, High-level													
	languages. Software requirements for programming: System software like									like				

	operating system, compiler, linker, loader; Application programs like editor. Algorithm, specification of algorithm. Flowcharts, Decision Tables, Pseudocodes.
Unit II	Data Types and Operators, Variables, Sequences and Iteration Different types of Data types, Expressions, Precedence Rules, Operators- Operators: arithmetic operators, relational operators, logical operations, bitwise operators, miscellaneous operators, LocalVariables, Global Variables, String.
Unit III	Conditional Statements, Loops, Arrays and Strings, User Defined Data Types If-else statement, For loop, While Loop, Nested Iteration, Concept and use of arrays, declaration and usage of arrays, 2-dimensional arrays, different types of user defined data types
Unit IV	 Dictionaries and Dictionary Accumulation, Functions/Methods Dictionary Basics, Operations, Methods, Advantage of modularizing program into functions, function definition and function invocation. Positional Parameter Passing, Passing arrays to functions, Recursion, Library functions. File Handling and Memory Management Concepts of files and basic file operations, Writing/ Reading Data to/from a .csv File, Memory Management Operations
	Text/Reference Books
1. 2. 3. 4. 5. 6. 7.	Yashwant Kanetkar, Let us C, BPB Publications. Jeri R. Hanly & Elliot P. Koffman, Problem Solving &Program Design in .C. 3rd Ed., Addison Wesley, 2000. All Kelley, Ira Pohl, A Book on C, Programing in C, 4 th Ed., Addison Westley, 2000. Balaguruswami, C programming language : Tata McGraw Programming for Problem Solving, R.S. Salaria, Khanna Book Publishing Co., Delhi. Stroustrup, B., The C programming language, Addison –Wesley1993 A. Goyal, C programming language, year 2020, publication NA

		PC/CSEAIMI	L/1-P: Databas	e Concepts La	ab (SQL)		
Course Type	Course	Contact	Delivery Maximum Max		m Marks	Exam	Assessment
	Credit	Hours/Week	Mode	External Internal		Duration	Methods
Program Core	02	04	Practical	50		3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objectives: This lab Course involves implementation of basic constructs of SQL. The objective of the lab course is to train the students translate the simple algorithms to programs in SQL efficiently.

Course Outcomes	At the end of this course, the student will be able to:
CO1	implement simple, iterative as well as recursive programs.
CO2	analyze given algorithms to a working and correct program.
CO3	compare solutions on the basis of the appropriateness of various commands of SQL.
CO4	integrate knowledge of structured queries with identification and correcting
	logical errors encountered at run time.
CO5	create written records for the given assignments with problem definition, design of
	solution and conclusions.
CO6	demonstrate ethical practices while solving problems individually or in groups.

CO-PO Mapping Matrix for Course PC/CSEAIML/1-P

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	1	-	-	-	2	-	-	-	3	-
CO2	2	2	-	-	1	-	-	-	2	-	-	-	3	-
CO3	2	2	-	-	1	-	-	-	2	-	-	-	3	-
CO4	3	2	3	-	-	-	-	-	3	-	-	-	3	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	3	-
CO6	-	-	-	-	-			3	-	-	-	3	3	-
Average	1.5	1	0.5	-	0.5	-	-	0.5	1.5	-	-	0.5	3	-

	ESC	C/2-P: Problem S	Solving and Pro	ogramming L	ab (C langua	ge)	
Course Type	Course	Contact	Delivery	Maximum Marks		Exam	Assessment
	Credit	Hours/Week	Mode	External Internal		Duration	Methods
Engineering Science	02	04	Practical	50		3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objectives: This lab Course involves implementation of basic constructs of programming language. The objective of the lab course is to train the students translate the simple algorithms to programs in C language efficiently

Course Outcomes At the end of this course, the student will be able to:														
CO1 implement simple, iterative as well as recursive programs.														
	CO2		analyz	ze give	n algorit	thms to a	a work	ing and	l corre	ct prog	ram.			
	CO3		compa	are solu	utions or	n the bas	sis of th	ne appr	opriate	eness o	f data s	structure	e used li	ke arrays,
			string	s and s	tructures	s and ma	nipula	te thro	ugh im	plemei	ntation			
	CO4		integr	ate kr	nowledg	ge of pr	ogram	ming	with i	dentifi	cation	and co	orrectin	g logical
			errors	enco	untered	at run t	ime.							
	CO5		create	writte	en record	ds for th	ne give	en assi	gnmen	ts with	n probl	em def	inition,	design of
			solutio	on and	conclus	ions.								
	CO6		demoi	nstrate	ethical p	practices	s while	solvin	g prob	lems in	dividu	ally or i	n group	s.
				CO-PO Mapping Matrix for Course ESC/2-P										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	1	-	-	-	2	-	-	-	3	-
CO2	2	2	-	I	1	-	-	-	2	-	-	-	3	-
CO3	2	2	-	-	1	-	-	-	2	-	-	-	3	-
CO4	3	2	3	-	-	-	-	-	3	-	-	-	3	-
CO5	-	-	-	3 -								-		
CO6	-	-	-	3 3 -									-	
Average	Average 1.5 1 0.5 - 0.5 - 0.5 1.5 - - 0.5 3 -								-					

SEMESTER – II

			BSC/2-T	: Mathema	atics II		
Course	Course	Contact	Delivery	Maxim	um Marks	Exam Duration	Assessment
Туре	Credit	Hours/Week	Mode	External	Internal		Methods
Basic Science	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance

Course Objectives: The main aim of the course is to discuss the concepts and related terminology of calculus, various theorems and engineering domain problems.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define the concepts and related terminology of probability, random variables, statistics.
CO2	understand the contribution and significance of Random variables, Basic probability and distribution, test of significance and curve fitting
CO3	solve the different problems of Random variables, Basic probability and distribution, test of significance and curve fitting.
CO4	analyze and evaluate different approaches and methods of calculus, ordinary differential equation and Random variables, Basic probability and distribution, test of significance and curve fitting.
CO5	compile and integrate the knowledge of Random variables, Basic probability and distribution, test of significance and curve fitting to solve the real-world problems.

CO-PO Mapping Matrix for Course BSC/2-T

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						-		-	-	-	-		-	-
	3	2	1	1								1		
CO2													-	-
	3	3	1	1	2							1		
CO3													-	-
	2	3	3	3	3	1			1	1		2		
CO4													-	-
	1	3	3	3	3	1	1		1			1		
CO5													-	-
	1	3	3	3	3	3	2	1	1	1	1	3		-
Average	2	2.8	2.2	2.2	2.2	1	0.6	0.2	0.6	0.4	0.2	1.6	-	-
			1		1									l

Course Content BSC/2-T: Mathematics II

Unit I	 Basic Probability: Introduction, additive law of Probability, conditional probability, independent events, Bayes' theorem. Random Variables: Discrete random variables, probability distribution, Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of Discrete Random Variables.
Unit II	Continuous Probability distribution: Continuous random variables and their properties, probability distribution, Probability density function and distribution function, functions and densities, Expectation, Moments, Variance and standard deviation of Continuous Random Variables. Probability distributions : Binomial, Poisson and Normal- evaluation of statistical

	parameters for these distributions, Poisson approximation to the binomial distribution, Introduction to exponential and gamma densities.						
Unit III Basic Statistics: Measures of Central tendency: Mean, Median and Mode Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile mean deviation, standard deviation, coefficient of variation, Moments, ske Kurtosis. Correlation, Rank correlation, Correlation coefficient, methods of c 							
Unit IV Curve fitting by the method of least squares: Introduction, fitting of straight second degree parabolas and more general curves, fitting of a geometric or power of the form y=ax ^b , fitting of an exponential curve of the form y=ab ^x . Test of significance: Basic terminology, large sample test for single proprese difference of proportions, single mean, difference of means and difference of st deviations. Test for single mean, difference of means (t-test), Chi-square tr goodness of fit and independence of attributes							
	Text/Reference Books						
 Erwin Kreyszig, A P. G. Hoel, S. C. F (Reprint). S. Ross, A First C W. Feller, An Intro 5. N.P. Bali and Mar 2010 	Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003 ourse in Probability, 6th Ed., Pearson Education India, 2002. oduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968. hish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,						

- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
 Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

	PC/CSEAIML/2-T: Object Oriented Programming										
Course	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment Methods				
Туре	Credit	Hours/Week	Mode	External	Internal	Duration					
Program	03	03	Lecture	70	30	3 Hours	TEE/MTE/				
Core					20 5 5		Assignment/ Attendance				

Course Objectives: Objected Oriented Programming using C++ is an essential course for every graduate in Computer Science and Engineering. This course introduces the Object Oriented concepts such as data encapsulation, data hiding, data abstraction, reusability, exception handling etc., and their implementation using C++.

Course Outcomes	At the end of this course, the student will be able to:										
CO1	list the concepts related to object oriented paradigms										
CO2	distinguish between structured and object oriented approaches to programming.										
CO3	apply object oriented constructs for problem solving										
CO4	detect logical and run time errors and suggest appropriate modifications										
CO5	justify the design of a program for a given problem										
CO6	design solutions to programming problems using multiple object oriented programming constructs together										
	CO-PO Mapping Matrix for Course PC/CSEAIML/2-T										

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-	3	-
CO3	2	1	-	-	2	-	-	-	-	-	-	-	3	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-	3	-
CO5	2	3	-	-	-	-	-	-	1	-	-	-	3	-
CO6	3	3	1	-	2	-	-	-	1	-	-	-	3	-
Average	2	1.83	0.16	-	0.67	-	-	-	0.33	-	-	-	3	-

	Course Content PC/CSEAIML/2-T: Object Oriented Programming										
Unit I	Principles of Object Oriented Programming : Software Crisis, Software Evolution, Procedure Oriented Programming, Object Oriented Programming Paradigm, Basic concepts and benefits of OOP, Object Oriented Languages, Structure of C++ Program , Tokens, Keywords, Identifiers, Constants, Basic data type, User-defined Data type, Derived Data type, Symbolic Constants, Declaration of Variables, Dynamic Initialization - Reference Variable, Operators in C++, Scope resolution operator, Memory management Operators, Manipulators, Type Cast operators, Expressions and their types, Conversions, Operator Precedence, Control Structures										
Unit II	Functions in C++: Function Prototyping , Call by reference ,Return by reference , Inline functions , Default, const arguments , Function Overloading , Classes and										

Objects, Member functions, Nesting of member functions, Private functions, Memory Allocation for Objects, Static Data Members, Static functions, Array of Objects, Objects as function arguments, Returning friend functions, Const Member functions.								
Unit III	Constructors: Parameterized Constructors , Multiple Constructors in a class , Constructors with default arguments , Dynamic initialization of objects , Copy and Dynamic Constructors , Destructors , Operator Overloading , Overloading unary and binary operators , Overloading Using Friend functions , manipulation of Strings using Operators.							
Unit IV	 Inheritance: Defining derived classes - Single Inheritance ,Making a private member inheritable , Multilevel, Multiple inheritance , Hierarchical inheritance , Hybrid inheritance , Virtual base classes , Abstract classes , Constructors in derived classes , Member classes , Nesting of classes. Pointers, Virtual Functions and Polymorphism: Pointer to objects , this pointer, Pointer to derived Class , Virtual functions , Pure Virtual Functions , C++ Streams , Unformatted I/O, Formated Console I/O , Opening and Closing File. 							
	Text/Reference Books							
1. E. 2. Str 3. M Do 4. He	Balaguruswamy, Object Oriented Programming in C++ : Tata McGraw roustrup, B., The C++ programming language, Addison –Wesley1993. astering Object-Oriented Programming, R.S. Salaria, Khanna Book Publishing Co., elhi erbert Schildt, The Complete Reference to C++, 4 th edition, McGraw Hill Education							

PC/CSEAIML/3-T: Data Structures										
Course	Course	Contact	Delivery	Maximum Marks				Exam	Assessment	
Туре	Credit	Hours/Week	Mode	External	Internal			Duration	Methods	
Program	04	04 Lecture 70 30		30		3 Hours	TEE/MTE/			
Core					20	5	5		Assignment/ Attendance	

Course Objectives: The students should be able to describe and implement various data structures including lists, arrays, stacks, queues, binary search trees, graphs, hash tables, and matrices. The student will be able to analyse and apply various algorithms for shortest path calculation, sorting and searching applications.

Course Outcomes At the end of this course, the student will be able to:														
	CO1		defi	ne: abst	ract dat	a types	s, algori	thms, c	omplexi	ty of alg	gorithms	, linear	data stru	ictures,
	~~~		non	-linear d	lata stru	ctures,	searchi	ng, sort	ing, has	hing.		•		
	CO2		give	: origin	al exam	ples c	ot: data	structu	ires and	its type	es; expla	an: sort	ing tech	niques,
	<u>CO2</u>		sear	calculate: (complexity of algorithm) use array stack queue linked list									ist traa	graph
	COS		line	linear search binary search bubble sort selection sort insertion sort radix sort shell										
			sort	, merge	sort, qu	ick sor	t, heap	sort, ha	sciections is h functions is h functions is how where the second se	tion to so	olve give	en proble	ems.	t, shen
	CO4		diff	erentiat	e: data	a stru	cture,	search	ing tec	hniques	s, sorti	ng tech	nniques	, hash
			fun	ctions;	analyze	: time	and sp	ace con	mplexit	y.		-	-	
	CO5		eval	uate: tl	he comj	plexity	of li	near sea	urch, bir	ary sear	ch, bub	ble sort,	selectio	on sort,
			inse	rtion so	rt, radiz	k sort,	shell so	rt, merg	ge sort, c	luick so	rt, heap	sort , has	sh functi	ion and
			sele	ct the be	est one f	or give	en prob	lem.			2 т			
60	201			-PO M	apping	Matri	x for C	ourse P	C/CSE	AINL/.	5-1	2010	Page	DGGA
COs	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	POIO	POII	POI2	PSOI	PSO2
CO1	1	3	1	1	1	-	3	-	-	-	-	-	3	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-	3	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-	3	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-	3	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-	3	-
Average	2	1.4	1.4	2.2	1.5	-	3	-	-	-	-	-	3	-
					PC/CSI	<b>Co</b> i EAIMI	urse Co _/3-T: I	ntent Data Sti	ructure	5				
	Unit I		Intr	oductio	on and	Elem	entary	Data S	Structu	res				
			Intr	oductio	on: Intr	oducti	on to I	Data Str	ructures	and da	ta types	s, Effici	ent use	of
			men	nory, R	Recursio	on, ti	me an	d spac	e com	plexity	of alg	orithms	s, Big	0
Notation and theta notations														
Elementary Data Structures: Stacks queue						eues. I	nfix. P	ostfix	& Pref	ix				
	cons	versions	, evalu	ations	ofer	ression	s mult	inle sta	icks and	1 queue	s priori	itv		
		lee ac h	eane d	ouble	ended		imnlan	entatio	n of eta	eks and				
queues as neaps, double ended queue, implementation of stacks and qu							queues	•						

	Unit II	Linked Lists Singly linked lists, linked stacks and queues, polynomial addition, sparse matrices, doubly linked lists and dynamic storage management, circular linked list, Applications of Stacks, Queues and Linked lists, Garbage collection, Josephus Problem							
	Unit III	<b>Trees</b> Basic terminology, binary trees, binary tree traversal, representations of binary tree, application of trees, decision tree, game trees, Threaded Trees, Binary Search Tree, AVL tree, B-tree							
	Unit IV	Graph Theory Graph representations, Graph Traversals, Dijkstra's algorithm for shortest path, Prim's and Kruskal's Algorithm for Minimal Spanning tree Sorting and Searching Searching: Linear search, binary search and hash search. Sorting: Insertion sort, selection sort, bubble sort, quick sort, merge sort, heap sort, and Bucket sort							
		Text/Reference Books							
1.	Data Structure	s, R.S. Salaria, Khanna Book Publishing, 2019.							
2.	Data Structure	s and Program Design in C By Robert L. Kruse, C.L. Tondo, Bruce							
	Leung,Pearson	Education, 2007.							
3.	Expert Data St	ructures with C, 3 rd Edition, R.B. Patel, Khanna Book Publishing, 2020.							
4.	Expert Data St	ructures with C++, 2 nd Edition, R.B. Patel, Khanna Book Publishing, 2020.							
5.	Data Structure 1989.	s Using C & C++, Langsam, Augenstein, Tanenbaum, Pearson Education,							
6.	Fundamentals Press, 2011.	of Data Structures, Ellis Horowitz and Sartaj Sahni, Computer Science							
7.	An introductio TMH, 2004.	on to data structures with applications, J.P. Trembley & P.G. Sorensen,							

	ESC/3-T: Mathematical Concepts for Artificial Intelligence											
Course Type	Course	Contact	Delivery Mode	Maximu	m Marks	Exam Duration	Assessment Methods					
	Credit	Hours/Week		External	Internal							
Engineering Science	03	03	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance					

**Course Objectives**: This course should help the students understand the basic mathematical background of AI. Also, thestudents should be able to apply statistics and probability to analyse various datasets.

-															
	Course	e Outc	omes	At	the er	nd of	this c	ourse	e, the st	udent	will be	able to:			
		CO1		def	ine th	e the	mathe	ematio	cal bac	kgrou	nd of Al	.•			
		CO2		unc	lerstar	nd the	math	nemat	ical ba	ckgro	und of A	AI, statist	ical meth	ods to ar	alyze and
				col	lect d	ata									
		CO3		sol	ve the	differ	ent pr	oblen	ns of A	I, stati	stical me	ethods to	analyze a	nd collec	et data,
ľ		CO4		An	Analyze and evaluate different problems of AI, use statistical methods to analyze										
				and	and collect data,										
		CO5		cor	npile	and i	ntegr	ate th	e knov	vledge	of math	ematical	concepts	of AI,.	
L					C	0-PO	Map	ping I	Matrix	for Co	ourse ES	С/3-Т	_		
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1						-	-	-	-	-	-		3	3
		3	2	1	1								1	2	2
	CO2	3	3	1	1	2	-	-	-	-	-	-	1	3	3
	CO3	-	-					-	-			-	_	3	3
		2	3	3	3	3	1			1	1		2		
	CO4	-	2	2	2		1	1	-	1	-	-	1	3	3
	C05	1	3	3	3	3	1	1		1			1	2	2
	005	1	3	3	3	3	3	2	1	1	1	1	3	5	5
	Average	2	2.8	2.2	2.2	2.2	1	0.6	0.2	0.6	0.4	0.2	1.6	3	3
	Course Content ESC/3-T: Mathematical Concepts for Artificial Intelligence														
Unit I Equations, Functions and Graphs: Introduction to lin System of equations, Exponentials, radicals and log operations, Factorizations, Introduction to quadratic equ								to linear end logarith	equations, 1ms, Poly 1s, Functi	Intercepts nomials, ons	s and slopes, Polynomial				
	U	Init II		Vec mult matri matri	Vectors and Matrices: Introduction to vectors, Vector addition, vector multiplication, Introduction to matrices, matric multiplication, properties of matrices, types of matrices, Matrix division, solving system of equations with matrices. Matrix transformations, Eigen values and Eigen vectors, rank of matrix										

Uni	it III	Logic: Propositional logic, syntax and semantic for propositional logic, Tautologies, Contradictions and Contingencies, CNF, DNF. The predicate calculus and FOPL: predicate, terms, Quantifiers, free and bound variable, normal form of predicate logic, inference rules, resolution and unification.								
Uni	t IV	Fuzzy Logic: Introduction to fuzzy logic, representation of a classical set, representation of fuzzy set, basic properties of fuzzy sets. Fuzzy set operation: Intersection of fuzzy sets, union of fuzzy sets, complement of fuzzy sets, important terminologies in fuzzy set operations, properties of fuzzy sets, fuzzy arithmetic.								
		³ uzzy Composition: Max-Min composition, max-star composition, max-product composition, max-average composition, fuzzification and de-fuzzification.								
		Text/Reference Books								
1. I	Mathematics	for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon								
(	Ong, Cambri	dge University Press., 2020								
2. /	Artificial Inte	elligence and Expert Systems, V S Janakiraman, Macmillan India Ltd.								
3. 4	Advanced En	gineering Mathematics, Reena Garg, Khanna Book Publishing Co., Delhi.								
4. I	Machine Lea	rning, Rajiv Chopra, Khanna Book Publishing Co., Delhi.								
5. I	Introduction	to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Stephen								
I	Boyd, Lieven	Nandenberghe, Cambridge University Press., 2018								
6. I	Probability a	and statistics for Engineers and Scientists, Walpole, Myers, Myers and Ye.								
I	Pearson Educ	cation, 2012								
7. /	Advanced En	igineering Mathematics, Wylie and Barrett, McGraw Hill, 1995								
8. ł	https://www.	idemy.com/course/mathematical-foundation-for-machine-learning-and-ai/								

	PC/CSEAIML/4-T: Computer Organization and Architecture												
Course	Course	Contact	Delivery	Maxir	num	Marks		Exam	Assessment Methods				
Туре	Type Credit H		Mode	External	Internal			Duration					
Program Core	04	04	Lecture	70	30		3 Hours	TEE/MTE/ Assignment/					
		20 5		5		Attendance							

**Course Objectives**: Computer Architecture and organization describes the role of instruction set architecture in digital computer, main memory, and input/output devices. It illustrates the simple data path and control design for processors. It helps to understand the different operations and concept of instructions. It would enable the students to learn the basic function and architecture of modern computer systems.

Course	e Outo	comes	A	t the ei	nd of t	his cour	se, the s	tudent	will b	e able t	0:			
	CO1		o a	utline t chitect	the gen ture.	neral co	oncepts	of dig	ital el	ectronic	es and c	computer	organisat	tion and
	CO2		di	scuss t	he bas	ic comp	onents	and th	eir inte	erfacing				
(	CO3		А	Apply instructions for performing different operations.										
	CO4		aı	analyse the effect of addressing modes on the execution time of a program.										
	CO5		С	contrast different types of memory, their architecture and access methods.										
	CO-PO Mapping Matrix for Course PC/CSEAIML/4-T													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1	1	1	-	3	-	-	-	-	-	3	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-	3	-
CO3	3	1	1	3	3	-	3	-	-	-	-	-	3	-
CO4	2	1	1	3	1	-	3	-	-	-	-	-	3	-
CO5	2	1	3	1	3	-	3	-	-	-	-	-	3	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-	3	-
			PC/C	CSEAI	ML/4-'	C T: Com	course ( puter (	Conter Organi	nt zatior	n and A	rchitect	ure		
Unit I       Basic Principles: Combinational logic blocks (Adders, Subtractors, Multiplex         Demultiplexers, Encoders, Decoders), Sequential logic blocks (Flip-Flops, Regis         Counters); Flynn's classification of computers (SISD, MISD, MIMD); Performant         metrics: MIPS, MFLOPS.									tiplexers, Registers, formance					
Unit II Computer Organization and control, instruction reference, I/O reference memory; Microprogram micro-program sequence						on: Stor ion cyc ence; B ammed ( ncer, Im	re pro ele; ty asics Contro pleme	gram pe of of Lo ol: add ntation	control instruc ogic De ress seq n of con	concept tions: r esign, a uencing trol unit	, Instruction nemory ccumulation , micro-it	tion code reference for logic, nstructior	s, timing , register , Control 1 formats,	

	Unit III	Instruction Set Architecture & Parallelism: Instruction set based classification of processors (RISC, CISC, and their comparison); Stack Organization, Instruction Formats; addressing modes: register, immediate, direct, indirect, indexed; Operations in the instruction set: Arithmetic and Logical, Data Transfer, Control Flow; Types of interrupts.								
	Memory Hierarchy & I/O Techniques: The need for a memory hierarchy (Locality of reference principle, Memory hierarchy in practice: Cache, main memory and secondary memory, Memory parameters: access/ cycle time, cost per bit); Main memory (Semiconductor RAM & ROM organization, memory expansion, Static & dynamic memory types); Cache memory (Associative & direct mapped cache organizations; input-output interface, mode of transfer, DMA (Direct memory transfer).									
		Text/Reference Books								
1. 2.	Mano, M. Morris, M. Morris Mano, (	Digital Logic and Computer Design, Prentice Hall of India Pvt. Ltd., 1981. Computer System Architecture, Prentice Hall of India Pvt. Ltd., 1993.								
3.	Milles J. Murdocca Approach, John W	a, Vincent P. Heuring, Computer Architecture and Organization, An Integrated 'iley & Sons Inc., 2007.								
4.	4. William Stallings, 10th edition, Computer Organization and Architecture, Prentice Hall, 2016.									
5.	Heuring, V.P., Jord	dan, H.F., Computer Systems Design and Architecture, Addison Wesley, 1997.								

6. R.P Jain, Modern Digital Electronics, 3rd Edition, Tata McGraw Hill, 2003.

	HSMC/2-T: Universal Human Values-I											
Course Type	Course	Contact	Delivery	Maximu	m Maı	ks	Exam	Assessment				
	Credit	Hours/Week	Mode	Internal	Internal		Duration	Methods				
Humanities & Social Sciences	0	03	Lecture	70	30 20 5	) 5	3 Hours	Internal Interview/ viva voce/ MTE/ Assignment/ Attendance				

The internal assessment of 30 marks shall be carried out s per University ordinance.

The internal assessment of 70 marks will be at the end of Semester through Interview/ VIVA-VOCE only by a committee of Two Faculty Members including course coordinator and a faculty member appointed by Chairperson/Head of concerned Department.

**Course Objectives**: Universal Human Values course is aimed at creating awareness on Engineering Ethics and Human Values. It helps understand social responsibility of an engineer and appreciate ethical dilemma while discharging duties in professional life.

C	ourse		At the end of this course, the student will be able to:												
Out	tcomes														
(	201		define the concepts related to awareness about oneself, one's surroundings and goals in one's life												
(	CO2		describe the significance of value inputs in a classroom and start applying them												
in their life and profession, stay in harmony with society and nature.															
CO3 developing healthy and harmonious relationships															
CO4 understand groups and develop team spirit.															
CO5 exhibit leadership qualities.															
CO6 excel in personal and professional life															
				С	O-PO	Mappir	ng Matr	rix for (	Course	e HSM	IC/2-T				
COs	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-		-	-	-	-	-	2	-	-	-	3	-	-
CO2	-	-		-	-		2	3	2	1	-	-	2	-	-
CO3	-	-		-	-	-	-	-	2	2	2	-	2	-	-
CO4	-	-		-	-	-	-	-	-	3	2	-	2	-	-
CO5	CO5									-					
CO6															
Average	-		-	-	-	-	0.33	0.5	1	1.5	1	-	1.5	-	-
							~	~							

#### Course Content HSMC/2-T: Universal Human Values-I

Unit I	<b>Introduction to Value Education</b> Value Education, Definition, Concept and Need for Value Education, The Content and Process of Value Education, Basic Guidelines for Value Education, Self exploration as a means of Value Education, Happiness and Prosperity as parts of Value Education.
Unit II	Harmony in the Human Being Human Being is more than just the Body, Harmony of the Self ('I') with the

		Body, Understanding Myself as Co-existence of the Self and the Body,					
		Understanding Needs of the Self and the needs of the Body, Understanding the					
		activities in the Self and the activities in the Body.					
	Unit III	Harmony in the Family and Society and Harmony in the Nature					
		Family as a basic unit of Human Interaction and Values in Relationships, The					
		Basics for Respect and today's Crisis: Affection, e, Guidance, Reverence, Glory,					
		Gratitude and Love. Comprehensive Human Goal: The Five Dimensions of					
		Human Endeavour, Harmony in Nature: The Four Orders in Nature, The					
		Holistic Perception of Harmony in Existence.					
	Unit IV	Social & Professional Ethics					
		The Basics for Ethical Human Conduct, Defects in Ethical Human Conduct,					
		Holistic Alternative and Universal Order, Universal Human Order and Ethical					
		Conduct, Human Rights violation and Social Disparities, Professional Ethics					
		and Right Understanding, Competence in Professional Ethics, Issues in					
		Professional Ethics					
		Text/Reference Books					
1.	A. N. Tripathy, N	lew Age International Publishers, 2003.					
2.	Bajpai. B. L., Ne	w Royal Book Co, Lucknow, Reprinted, 2004					
3.	Bertrand Russell	Human Society in Ethics & Politics					
4.	Corliss Lamont, I	Philosophy of Humanism					
5.	Gaur. R. R., Sar	ngal. R, Bagaria. G.P, A Foundation Course in Value Education, Excel					
	Books, 2009.						
6.	Gaur. R. R., Sang	gal. R, Bagaria. G.P, Teachers Manual, Excel Books, 2009.					
7.	7. I. C. Sharma, Ethical Philosophy of India, Nagin & Co. Julundhar						
8.	Mortimer, J. Adle	er, What man has made of man					
9.	William Lilly, Int	troduction to Ethic, Allied Publisher					

	PC/CSEAIML/2-P: Object Oriented Programming Lab											
Course Type	Course	m Marks	Exam	Assessment								
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Compulsory Theory	02	04	Practical	50		3 Hours	TEE/MTE/ Assignment/ Attendance					

**Course Objectives**: The objective of this course is to get the students hands on practice with the advanced concepts of data structure and how to implement those concepts of object oriented programming using C++.

Course	e Outco	mes	At the e	end of th	nis cour	se, the s	tuden	t will	be abl	e to:					
	CO1		implement problems with object oriented framework												
	CO2		analyse the structure of programs for modular design.												
	CO3		evaluate robustness of a program by testing it on test/use cases.												
	CO4		design class hierarchies for implementing inheritance/polymorphism.												
CO5 create a lab record of assignments and conclusions.									ments including problem definitions, design of solutions						
CO6 demonstrate ethical practices and solve problems individually or in a group															
	CO-PO Mapping Matrix for Course PC/CSEAIML/2-P														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	3	-	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	3	-	
CO3	3	1	1	3	3	-	-	-	-	-	3	3	3	-	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	3	-	
CO5	3	1	1	1	3	-	-	-	-	-	3	3	3	-	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	3	-	
Average	2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3	3	-	

	PC/CSEAIML/3-P: Data Structures Lab												
Course Type	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment						
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods						
Program Core	02	04	Practical	50		3 Hours	TEE/MTE/ Assignment/ Attendance						

**Course Objectives**: The objective of this course is to get the students hands on practice with the concepts of data structure.

Course Outcomes	At the end of this course, the student will be able to:
CO1	identify: data type, time and space complexity, various data structure – stack, queue, linked list, trees, graph, searching, sorting and hashing.
CO2	understand and explain: abstract data types, data structure like- (stack, queue, linked list, tree, and graph), searching, sorting, and traversing algorithms and hashing function.
CO3	apply and use: various data types, algorithms, stack, queue and link list operations, tree traversal operation, graph representation and traversals algorithms, and searching sorting techniques on data.
CO4	distinguish: time and space complexity, stack and queue, single, double and circular linked list, binary, AVL, B tree and multiway search tree, depth and breadth first search, Dijkstra's and Kruskal's algorithm, various searching and sorting techniques.
CO5	select: algorithm, data representation technique, searching and sorting technique suitable in a given situation.
CO6	design: algorithm, various data structure – stack, queue, linked list, trees, graph, searching, sorting and hashing.

#### **CO-PO Mapping Matrix for Course** PC/CSEAIML/3-P

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1	1	1	-	-	-	-	-	1	3	3	-
CO2	2	1	1	3	1	-	-	-	-	-	2	3	3	-
CO3	3	1	1	3	3	-	-	-	-	-	3	3	3	-
CO4	3	3	1	3	1	-	-	-	-	-	3	3	3	-
CO5	3	1	1	1	3	-	-	-	-	-	3	3	3	-
CO6	3	3	3	3	3	-	-	-	-	-	3	3	3	-
Average	2.5	2	1.33	2.33	2	-	-	-	-	-	2.5	3	3	-